Cavity-Enhanced Photocurrent Generation in a p-i-n Diode Integrated Silicon Microring Resonator Matrix

Shaoqi Feng, Hui Chen, Xianshu Luo and Andrew W. Poon

Photonic Device Laboratory, Department of Electronic and Computer Engineering,
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China

Abstract: We report cavity-enhanced photocurrent generation in the 1.55-μm wavelength range in a p-i-n diode integrated silicon microring resonator matrix. We demonstrate photocurrent of ~10 nA at microring resonance wavelengths and cavity enhancement exceeding 11-fold.

©2010 Optical Society of America
OCIS codes: (230.5750) Resonators; (040.5150) Photoconductivity; (040.5350) Photovoltaic

Photocurrent generation in silicon in the 1.55-μm wavelength range is based on nonlinear two-photon absorption (TPA) [1, 2] or linear surface-state absorption (SSA) [3]. SSA is due to the presence of surface defects induced energy levels within the bandgap and is dominant to TPA upon relatively low optical power. Recently, we investigated cavity-enhanced photocurrent generation in the 1.55 μm wavelength range upon SSA in a p-i-n diode embedded silicon microring resonator [4]. Here we extend our work and report cavity-enhanced SSA-induced photocurrent generation in a silicon microring resonator matrix.

Figure 1(a) shows the optical micrograph of the fabricated 2×2 microring resonator-based matrix comprising four microring-resonator-based add-drop filters (denoted as A to D). We fabricate the device on a silicon-on-insulator (SOI) wafer with a 0.34-μm-thick silicon device layer on a 1-μm-thick buried-oxide layer. Four square-shaped microrings are identically designed with rounded-corner radii of 15 μm and side interaction lengths of 20 μm. Figure 1(b) shows the cross-sectional schematic of the p-i-n diode integrated optical waveguide. The numerical simulation result shows the waveguide optical mode overlaps with the Si/SiO₂ interfaces which give rise to SSA. The p⁺ and n⁺ regions are doped with 2×10¹⁹ and 1×10²⁰ cm⁻³ and connected with aluminum pads. The intrinsic region width is 1 μm. The microring resonator effectively stores optical energy for a relatively long time and thus enhances photocurrent generation.

![Fig.1](a) Optical micrograph of our fabricated 2×2 microring resonator-based matrix. (b) Cross-sectional schematic of the p-i-n diode embedded silicon microring waveguide with numerically simulated waveguide mode profile.

We use a wavelength-tunable diode laser to perform optical transmission spectrum measurement in TE
polarization (electric field // chip). For photocurrent measurement, we use a pair of radio-frequency (RF) probes in contact with the p-i-n diode aluminum pads. The RF probes are connected to a precision semiconductor parameter analyzer.

Figures 2(a) and (b) show the measured transmission spectra and corresponding short-circuit photocurrent spectra with light launched at ports I1 and I2, respectively. The photocurrents at resonance wavelengths are at least 11 times (with a maximum of 28 times) enhanced compared with off-resonance photocurrent (background). The on-resonance photocurrents depend on four factors [4]: (i) the cavity quality factors, (ii) the resonance extinction ratios, (iii) the optical powers coupled into the waveguides, and (iv) the carrier collection.

We measure the current-voltage (I-V) curves at resonance D of wavelength 1553.84 nm upon various estimated coupled optical powers (Fig. 2(c)). Figure 2(d) shows the on-resonance photocurrent is linearly proportional to the coupled optical power, which is expected from SSA. The relatively high reverse bias voltages applied (-5, -10V) sweep out more photocarriers. Figure 2(e) shows responsivity of up to 0.15 mA/W and dark current of ~1 nA upon 10 V reverse bias. We also observe photovoltaic effect in the fourth quadrant of the I-V curves. Figure 2(f) shows the maximum generated electrical power of ~ 4 nW with 95 μW estimated coupled optical power, which corresponds to power conversion efficiency of $\sim 4 \times 10^{-5}$, consistent with Ref. [4].

Reference: